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ON THE ADJUSTMENT OF INDIRECT FIRES BY USE OF

QUASILINEARIZATION

W. D. O ' N e i l and J . R. Holdswor th

ABSTRACT

A method is presented for the adjustment of artillery fires

even when the fall of shot cannot be observed, on the basis

of data obtained in tracking the projectile over the f irst

portion of i ts trajectory. The paper opens with a brief dis-

cusszlon of the physical situation and typical operational re-

quirements. The equations of the projectile's motion are pre-

sentcsd. A simple set of observations is assumed and a quasi-

linearization technique is developed which allows a determina-

tion of those trajectory parameters which yield the best least-

squares fit to the observations. The paper is concluded by a

consi.deration of some of the properties of the measurements

which will actually be made by the radar. This leads to a con-

sideration of certain statistical issues wherein i t is suggested

that some improvement in the character of the system parameter

estimates could be effected by utilizing cost functionals other

than the usual sum of the squared deviations. It is argued that

utilization of one of these modified criterion functions permits

one to account for the fact that the reliability of the empiri-

cally computed projectile velocity components varies in a parti-

ally known fashion along the projectile's trajectory. This allows

us tc give greater weight to those pieces of data in which we have

the most confidence.



Warships are often called upon to fire against inland targets. In

many cases only the geographic position (latitude, longitude, and

altitude) of the target is known and observation of the fall of shot

is not feasible. Certain variables affecting the projectile's flight

will typically not be known precisely and this will cause uncertainty

about the actual point of impact. It is clearly desirable to make ef-

ficient uss of all data which might aid in the estimation of these

variables. In this paper we discuss the use of quasilinearization

methods in dealing with some of these estimation problems.

The case via shall deal with is that of a gun launched, fin stabilized,

rocket boosted, unguided projectile. With rocket thrust set to zero

this will «also cover the case of unboosted, fin stabilized projectiles.

(The very complex question of sabot separation for hypervelocity, un-

boosted projectiles will not, however, be treated here.) Rail or tube

launched rocket projectiles may also be covered, simply by setting ini-

tial velocity to zero. Gun launched, spin stabilized projectiles may be

dealt with by a slight extension of the present methods, accounting for

gyroscopic drift.

It will be supposed that the ship is in coastal waters firing at a target

some distance inland and below the ship's horizon. Without the aid of out

side observers it is not possible to observe the fall of shot. The ship

can, however, employ its fire control radar to track the shell for the

first portion of its flight. The first projectile will be fired on the

basis of estimates of the critical parameters. Tracking the projectile's

flight, however, will permit the ship to correct its estimates. Tracking
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With respect to such a system a projectile will be acted upon by the

forces of gravity, drag, thrust, and l i f t , as well as a "Coriolis

Force". Tie latter will be neglected, as i t involves no unknown vari-

ables. Since the projectile can be observed over but a few miles of

flight, we may as well assume that gravitational acceleration is constant

and in the negative y direction. We visualize the projectile as a body

of rotation, stabilized so as to maintain zero angle of attack. Thus,

there is no lift force.

Generally, the projectile's booster motor will be designed to operate at

some constant thrust. Thrust will be terminated at some predetermined

time, with the projectile coasting thereafter. More complex thrust his-

tories are easily treated, provided the form of the thrust-vs.-time func-

tion is known.

There is also the question of the wind's effect upon the projectile's

flight. It is convenient to resolve the wind into in-range (x direction)

and cross-range (z direction) components. Since the projectile is trimmed

for zero angle of attack, the effect of cross winds is simply to induce

cross-range drift at the wind's velocity. Since a projectile might remain

in flight for anything up to 100 seconds, a 25-knot (14 yards/second)

crosswind could cause as much as 1400 yards drift. Since drag forces are

with respect to the air mass rather than the earth, the velocity term in

the drag equation must reflect the in-range wind.

In general, of course, the wind will not be constant over the projectile's

flight. In principle one could estimate the wind as a function of posi-

tion along the flight path, given sufficient data. Since we, however, are
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flight of big-gun projectiles. Since angle of attack is constant in

our case, C^ is a function only of Mach number. And since Mach number

depends on velocity and density, we may write

C D - C D ( v / P ) (2)

We will assume that an experimental determination of C_ has already

been made.

The density of the atmosphere decreases with altitude. Its dependence

on altitudes is usually re presentable in the form

P(y) = P(O)e~hy (3)

where h is a suitable dimensioned constant. We shall assume that equa-

tion (3) holds but that h is not known precisely. The sealevel density,

p(0), may be easily and accurately measured. We write P(o) = P .

(4)

We define

U(t) = (° f ° r t<0

(l for t>0

Assuming, for convenience, that S =S -0, we can now write down the pro-

jec t i le ' s equations of motion:

mx = [(l-U(t-t ))T-D] cos 0

my = [(l-U(t-t ))T-D] sin 0 - mg
C

me = 0

2 .2 .2
v = x + y

Tan 6 = y/x

Alternatively,

(5)
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T and t will be known, they will, in fact, depend somewhat upon environ-
c

mental conditions during flight. The density lapse rate, h, may vary

somewhat from standard. While wind components at the point of firing

can be directly observed, the general or average components are not con-

veniently observable. Thus we need to estimate T, t , h, W , and W .

We shall first suppose that we have available noisy observations of u

at certain times t,, t2, , t... We shall say that b. is the observa-

tion at t., so that

h± * u(t±) (13)

We propose to estimate T , t , h , W , and W in such a way as to mini
C X -—

raize
N

S = £ W O " b±)
 wi (*(*,) - b,)

i = 1 î i î i i
(14)

In equation (14) the matrices W. are positive definite 4 by 4 weighting

matrices whose nature will be discussed in a later section of this paper.

A common form for the matrices W. is shown below in equation (14-a).

W.=

1000

0100

0010

000 \

(14-a)

If the weighting matrices have this form, then the error functional S

may be explicitly written as:

S = £ [(x.-x.)2+(y.-y.)2+(I.-z.)2+ (y.-y.)2J
i=l

(14-b)

where X is a positive dimensional constant which insures the homogeneity

of the physical units in equation ÇL4-b). It will be shown later that the

value of X is related to the square of the ratio of the velocity uncer-

tainty to the position uncertainty.



Equations (20) and (21) are linear and thus easily integrable, given

initial conditions. We have a complete set of initial conditions for

(21),

Q(0) = 0

(where 0 is the 4x5 null matrix). But, since u contains the unknown

W and W , we do not have initial conditions for p. (The condition

would be p(0)=u .)

We will, as usual, resort to the method of complementary functions in

dealing with p. Let v be a particular solution to (20), obtained with

any convenient initial conditions:

o o o o* = f ( u u ; O + J (U Ü ;C O ) . (TT-U°) - K(u° ;c%c° , „(0) =IT (25)

And l e t <J> be a matrix of independent solutions to the homogeneous

version of (20);

<!>= J(u ;c )(J> , <K0) = <j> (26)

where <j> is a 4*4 matrix and § is a constant 4j{4 matrix with non-
o

zero determinant. Then p can be represented as

P = * + ^a (27)

where a is a vector chosen to realize the in i t i a l conditions for

p, that i s such that

" o = P(O) = TT(O) + 4>(0)a (28)

Now note that (from equations (7)):

u =o

v cos e + w
g ox

V sin 0 (29)
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we obtain

4 N

= 2

3S1

at

as2

as1

as?

= 2

4 N
2 S i?i

E

4 N

E E
i=i i=i

4 N

_.« = o

.« = o

.. = o

h = 2 2- 2 . o( .(t.
2 j=l i=l 3 '

= o J

>

where q i s the K element of Q. and similarly for <$. and A
J "1"

Equations (35) provide a set of five linear algebraic equations in

the five components of C . If well-conditioned, these may readily

be solved for C . I t is necessary f i r s t , however, to calculate J

and K, since T, §, and Q depend upon them. The columns of J are

readily computed directly from (9):
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From equations (1) and (3) we see

Thus

(41)

àf
ôh =

CD

CD

0

m o
Of course

àf

X »

PAV x

2m

PA v

2m

f

y

y y

"o"
0

0

0

(42)

(43)

The columns of K are now given by (37), (39), (42), and (43).

With J and K at hand, IT, cj>, and Q can be obtained by numerical methods

C can then be obtained from (35), and u from (24). If we now set

û2 = fd^/c1) + J(u1/c1).(u2-u1) + K(u1;c1)e(c2-c1) (44)

? 2 1
We can now proceed to obtain u and c just as we obtained u and
1 _..
c . This process can be continued until either convergence or
divergence becomes evident.
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x = rcosecosß

y = r s i n <f>

z = rcoscfcsinß

(45)

(46)

(47)

Differentiation of these quantities with respect to time permits us

to express the projectile velocity vector in terms of the radar

measured quantities.

u = y

z

y

f cos<£>cosß - *" 4> sin4>cosß - r à

r sin4>+ r <£ cos^»

r coscj-sinß - r X sinc^sinß - r § costjjcos ß

r sin

(48)

Returning for a moment to equations (8) and (13), let us write the

componentis of the measured velocity vector b. in the following com-

ponent form :

b. = (49)

z ,

fij

In equation (49) the tilde indicates that the components of the ob-

served vector b are not measured precisely but are contaminated by

noise.

If we rewrite equation (14-b) we obtain:

S = T, [(x\-x.)2 + (£.-y.)2 + (z.-z.)2 + X(y.-y.)2] (50)

Equation (50) states that our cost function S is the sum of the

squares of the observed error residuals. It is now appropriate

to make some comments about the constant X. appearing in equation

(50).
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Greater weiight is now given in (52) to those observations in which we

have the greatest faith. Hence, the quasilinearization process could

be invoked toward the minimization of the quadratic function S* to ob-

tain another estimate C* of the vector of unknown parameters. Because

of a differential weighting of the residuals in S*, the estimate C*

might be eixpected to have more desirable statistical properties than

the estimcite of C obtained by minimizing S.

In addition to the variances df , 07 , 07 being unequal and possibly
Xi ^i Zi

time varying, it is possible that at the same instant of time the errors in

X-/7./ 7" t• y • might be cross-correlated. If this were the case and if

the only error correlation was cross-correlation at the same instant of

time, then in the case of multivariate gaussian observation errors, we

might wish to proceed as follows. We let V. denote the covariance

r*s *"*w ^w

matrix of the observation errors of the observations x., y., z.

made at time t^• That is:

V. = E [ ( b . - u . ) ( b . - u . ) T ] (53)
x s x x / v x x / J v /

where E i«; the expected value operation and T is matrix transposi-

tion. Then if V. could be computed a priori, or approximately in-

ferred, we might wish to take advantage of our knowledge of observa-

tion error cross-correlation as well as variability of the observation

variances.

Again, assuming quadrivariate gaussian observation error distributions,

we-1 are led to the following quadratic form:

S** = 2-< (b.-a. )TV."1(b.-u. ) (54)
JI=1 ^ X X ' X ^ X X ' V /
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Substituting equation (55) for the radar measured quantities into

equation (48) we see that our measured velocity vector may be expressed

as functions of the radar measurements as follows:

r cos ç>cosyS- rcpsinccosß - r

f s i n 0 + r<i>cos<£>b =

Ly -
f cos^sinß- r^sinjsinß - 'rßcosScos

Lrsin$ M

(56)

In equation (56) we have suppressed the time index i for the sake of

notationa1 b revity.

Now, even though the radar measured quantities are postulated to bave

known gaussian distributions, it is clear from equation (56) that the

observed vector b is not distributed according to a trivariate gaussian

law. If, however, the perturbing S quantities have variances which are

small compared to their true values, then it is possible to approxi-

mate the distribution of b by a trivariate gaussian distribution, or

at least to approximately compute the variances and covariances or

tss **+s /+**

mixed moments of the quantities x, y, z. It should be noted, inci-

dentally, that although the errors in r, ß, $, etc. are assumed to

be uncorrelated, the velocity component errors Sx, Sy, Sz will be >

correlated.

If we let i. denote the following 6x1 vector,

r_.

r.
i

(57)
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the variances and covariances in the estimates of the velocity com-

ponents cannot be precisely computed. We do, however, have the mea-

sured radar quantities £. at time t. so that we can evaluate the par-

tial derivatives at the measured values r\ etc., and by so doing

obtain an estimate V. of the second order moments of the estimates of
i

the target velocities. This estimate of the uncertainties can then be

used to weight the residuals as in (5 2) according to:

N _ . *»- 2 <r2 . rr 2 ~ 2 _
r x.-x.\ ,z.-z. \ /Y • "Y • \ Ir/x.-x,\ /x.-x.\ ,z.-z. \ /Y • "Y • \

l 7i l ' Ji

where the estimated variances u\ ,177, vï are the diagonal elements
x.' y. z. 3

.— i 7i l

of V.. This would allow the data to be weighted variably depending

upon the Belative geometry at the time of the ith observations. That

is, even though the measured sensor vector £. has a stationary error

distribution, the variances in the computed estimates of the projec-

tile velocity vector from the radar measurements, do have variances

which are functions of geometry and time along the trajectory. Using

S* as in (62) would allow one to account for the dependence of the

residual uncertainty upon the projectile's actual position and velo-

city and to weight the more reliable data more heavily.

In a similar spirit , if one had confidence that valid information about

cross-correlation of the velocity component errors was contained in the

matrices V.r then one might wish to work with the quadratic form

S** = > (b.-u.) V. ± (b.-u. ). (63)
* £ « [ ^ l l ' l ^ l l 7 V /

= > (b.-u.) V. ± (b.-u. ).
* £ « [ ^ l l ' l ^ l l 7

In equations; (62) and (63) the estimates of the distributional second

moments, which are used in the data weighting, are computable from the

measured radar sensor data and an a priori knowledge of the radar sensor

22 2
variances G ', Gi.
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Now when E has multivariate gaussian distribution then Q in (6 /) is

proportional to the log likelihood function of the data and the es-

timate of a given by (6-Ö) is of course the maximum likelihood estimate.

If € is not normally distributed then a is still the minimum variance

unbiased linear estimate even though the actual maximum likelihood es-

timate could conveivably be some nonlinear functional of the data which

might have a smaller mean square error.

Although the analogy is a bit weak and far from compelling, we think

that there; may well be some merit in working with either of the cost

functionals S* or S** as given in equations (62 ) and (63).

Unfortunately, the exigencies of our present work schedule, coupled

with a lack of computer time and programming assistance, have pre-

cluded our performing the numerical experimentation which we had

hoped to be able to do.


